Q.P. Code: 18ME0320

(AUTONOMOUS)

B.Tech III Year II Semester Supplementary Examinations February-2022 HEAT & MASS TRANSFER

(Common to ME & AGE)

Time: 3 hours

Max. Marks: 60

R18

PART-A

(Answer all the Questions $5 \times 2 = 10$ Marks)

1	a	How is Heat Transferred	2M
	b	Define Fin efficiency	2 M
	c	What is meant by free or natural convection	2 M
	d	Define LMTD of a heat exchanger	2 M
	e	State Stefan Boltzmann Law	2M

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

•			
2	a	What is convection heat transfer ? Explain its parameters.	5M
	b	A plane wall is 150 mm thick and its wall area is 4.5 m2. If its conductivity is 9.35	5M
		W/m ⁰ C and surface temperature are steady at 150 ⁰ C and 45 ⁰ C, determine i).Heat	
		transfer across the plane wall, ii). Temperature gradient in the flow direction	
		OR	
3	a	Write the laws of radiation.Explain its parameters	5M
	b	Derive the general heat conduction equation in Cylindrical coordinate	5 M
		UNIT-II	
4	a	Derive an expression for heat conduction through a composite wall	5M
	b	Calculate the critical radius of insulation for asbestos (k = 0.172 W/m K)	5M
		surrounding a pipe and exposed to room air at 300 K with $h = 2.8$ W/m K	
		Calculate the heat loss from a 475 K, 60 mm diameter pipe when covered with the	
		critical radius of insulation and without insulation	
		OR	
5	a	Obtain the expression of heat conduction through hollow cylinder.	5M
	h	A 50 cm x 50 cm conner slab 6 25 mm thick has a uniform temperature of 200 0C	514

b A 50 cm x 50 cm copper slab 6.25 mm thick has a uniform temperature of 300 0C. 5M Its temperature is suddenly lowered to 36 0C. Calculate the time required for the plate to reach the temperature of 108. Take ρ = 9000 kg/m3, c = 0.38 kJ/kg 0C, k = 370 W/m 0C and h = 90 W/m20C.

Page 1 of 2

UNIT-III

R18

6	a	Derive the expression for Reynolds number and how flows are determined by	5M				
		Reynolds number.					
	b	What is the physical significance of the Nusselt number? How is it defined	5M				
OR							
7	a	Define Nusselt number, Prandtl number and their significance	6M				
	b	A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100° C in an atmosphere environment of 20 $^{\circ}$ C. Calculate heat loss by free convection from the	4M				
		surface of the cylinder. Assume properties of air at mean temperature as $\rho = 1.06$					
		kg/m^3 , $v = 18.97 \text{ x } 10^{-6} \text{ m}^2/\text{s}$, $cp = 1.004 \text{ kJ/kg}^0\text{C}$ and $k = 0.1042kJ/mh^0\text{C}$					
		UNIT-IV					
8	Ex	plain briefly the various regimes of saturated pool boiling with diagram	10M				
OR							
9	De	rive the expression for Logarithmic Mean Temperature Difference (LMTD) in case	10M				
	of	parallel flow.					
	UNIT-V						
10	a	Define the term absorptivity, reflectivity and transmittivity of radiation.	5M				
	b	Explain the modes of Mass transfer.	5M				
OR							
11	a	ExplainPlank"s Law, WiensDisplacement Law.	5M				
	b	What is Mass transfer coefficient?	5M				
11	a b	What is Mass transfer coefficient?	5M 5M				

END